About in-house code FK3

FK3 is an in-house flow and flame analysis code, whose development was initiated at the Komori and Kurose laboratory and has been continued at the Kurose laboratory at Kyoto University. The FK3 employs a pressure-based semi-implicit solver for compressible flows. Some achievements obtained using the FK3 are as follows.


Gas Combustion

  1. S. Wada, R. Kai, R. Kurose, "LES study on the breakup mechanism of LOX core in LOX/GH2 supercritical combustion", Proceedings of the Combustion Institute, accepted.
  2. H. Shehab, H. Watanabe, Y. Minamoto, R. Kurose, T. Kitagawa, "rphology and structure of spherically propagating premixed turbulent hydrogen-air flames", Combustion and Flame, 238, 111888 (2022).
  3. T. Ikeda, Y. Tsuruda, H. Watanabe, R. Kurose, T. Kitagawa, "Numerical study on soot formation in spherically propagating, iso-octane, rich, cellular flames", Fuel, 305, 121520 (2021).
  4. K. Yunoki, R. Kai, S. Inoue, R. Kurose, "Numerical simulation of CO formation/reduction on flame propagation in the vicinity of cooled wall", Energy, 236, 121352 (2021).
  5. R. Kai, R. Masuda, T. Ikedo, R. Kurose, "Conjugate heat transfer analysis of methane/air premixed flame - wall interaction: A study on effect of wall material", Applied Thermal Engineering, 181, 115947 (2020).
  6. R. Kai, A. Takahashi, R. Kurose, "Numerical investigation of premixed flame-wall interaction: Effectiveness of insulation wall on heat loss reduction", Journal of Thermal Science and Technology, 15, Paper No.20-00390 (2020).
  7. K. Yunoki, R. Kai, S. Inoue, R. Kurose, "Numerical simulation of CO concentration on flame propagation in the vicinity of the wall -Validity of non-adiabatic FGM approach-", International Journal of Gas Turbine, Propulsion and Power Systems, 20(13), 8-15 (2020).
  8. U. Ahmed, A. L. Pillai, N. Chakraborty, R. Kurose, "Surface density function evolution and the influence of strain rates during turbulent boundary layer flashback of hydrogen-rich premixed combustion", Physics of Fluids, 32, 055112 (2020).
  9. H. Shehab, H. Watanabe, R. Kurose, T. Kitagawa, "Numerical study on the effects of turbulence scale on spherically propagating hydrogen flames within multiple flame radii", International Journal of Automotive Engineering, 10, 292-298 (2019).
  10. U. Ahmed, A. L. Pillai, N. Chakraborty, R. Kurose, "Statistical behavior of turbulent kinetic energy transport in boundary layer flashback of hydrogen-rich premixed combustion", Physical Review Fluids, 4, 103201 (2019).
  11. P. Yu, H. Watanabe, W. Zhang, R. Kurose, T. Kitagawa, "Flamelet model for a three-feed non-premixed combustion system with diluent stream: Analysis and validation of quasi-two-dimensional flamelet (Q2DF) models", Energy & Fuels, 33, 4640-4650 (2019).
  12. Y. Hu, R. Kurose, "Large-eddy simulation of turbulent autoigniting hydrogen lifted jet flame with a multi-regime flamelet approach", International Journal of Hydrogen Energy, 44, 6313-6324 (2019).
  13. R. N. Roy, M. Muto, R. Kurose, "Direct numerical simulation of ignition of syngas (H2/CO) mixtures with temperature and composition stratifications relevant to HCCI conditions", International Journal of Hydrogen Energy, 42, 26152-26161 (2017).
  14. T. Kitano, H. Iida, R. Kurose, "Effect of chemical reactions of H2/O2 combustion gas on heat transfer on a wall in a turbulent channel flow", Journal of Heat Transfer, 139, 044501 (2017).
  15. T. Kitano, T. Tsuji, R. Kurose, S. Komori, "Effect of pressure oscillations on flashback characteristics in a turbulent channel flow", Energy & Fuels, 29, 6815-6822 (2015).

Spray Combustion

  1. Y Hu, R Kai, J Wen, T Murakami, Y Jiang, R Kurose, "LES Study of stabilization mechanism in lifted ethanol spray flames", Proceedings of the Combustion Institute, accepted.
  2. A. L. Pillai, T. Murata, R. Kai, R. Masuda, T. Ikedo, R. Kurose, "Numerical analysis of heat transfer characteristics of spray flames impinging on a wall under CI engine-like conditions", Combustion and Flame, 239, 111615 (2022).
  3. J. Wen, Y. Hu, R. Kurose, "Numerical simulation of kerosene jet in crossflow atomization and evaporation under the elevated pressure and oscillating air-flow condition", Atomization and Sprays, 31, 73-87 (2021).
  4. S.P. Malkeson, U. Ahmed, A.L. Pillai, N. Chakraborty, R. Kurose, “Flame self-interactions in an open turbulent jet spray flame", Physics of Fluids, 33, 035114 (2021).
  5. K. Konishi, R. Kai, R. Kurose, “Unsteady flamelet modelling for N2H4/N2O4 flame accompanied by hypergolic ignition and thermal decomposition", Applications in Energy and Combustion Science, 5, 100022 (2021).
  6. S. P. Malkeson, U. Ahmed, C. T. d'Auzay, A. L. Pillai, N. Chakraborty, R. Kurose, “Displacement speed statistics in an open turbulent jet spray flame", Fuel, 286, 119242 (2021).
  7. S. P. Malkeson, U. Ahmed, A. L. Pillai, N. Chakraborty, R. Kurose, "Evolution of surface density function in an open turbulent jet spray flame", Flow, Turbulence and Combustion, 106, 207-229 (2021).
  8. J. Nagao, A. L. Pillai, R. Kurose, " Investigation of lean spray combustion instability in a back step combustor using LES", Journal of Thermal Science and Technology, 15, Paper No.20-00330 (2020).
  9. A. L. Pillai, J. Nagao, R. Awane, R. Kurose, “Influences of liquid fuel atomization and flow rate fluctuations on spray combustion instabilities", Combustion and Flame, 220, 337-356 (2020).
  10. Y. Hu, R. Kai, R. Kurose, E. Gutheil, H. Olguin, “Large eddy simulation of a partially pre-vaporized ethanol reacting spray using the multiphase DTF/flamelet model", International Journal of Multiphase Flow, 125, 103216 (2020).
  11. J. Wen, Y. Hu, A. Nakanishi, R. Kurose, “Atomization and evaporation process of liquid fuel jets in crossflows: A numerical study using Eulerian/Lagrangian method", International Journal of Multiphase Flow, 129, 103331 (2020).
  12. C.T. d'Auzay, U. Ahmed, A. L. Pillai, N. Chakraborty, R. Kurose, "Statistics of progress variable and mixture fraction gradients in an open turbulent jet spray flame", Fuel, 247, 198-207 (2019).
  13. A.L. Pillai, R. Kurose, "Combustion noise analysis of a turbulent spray flame using a hybrid DNS/APE-RF approach", Combustion and Flame, 200, 168-191 (2019).
  14. Y. Hu, R. Kurose, "Partially premixed flamelet in LES of acetone spray flames ", Proceedings of The Combustion Institute, 37, 3327-3334 (2019).
  15. Y. Haruki, A. L. Pillai, T. Kitano, R. Kurose, "Numerical investigation of flame propagation in fuel droplet arrays", Atomization and Sprays, 28, 357-388 (2018).
  16. A. L. Pillai, R. Kurose, "Numerical investigation of combustion noise in an open turbulent spray flame", Applied Acoustics, 133, 16-27 (2018).
  17. Y. Hu, R. Kurose, "Nonpremixed and premixed flamelets LES of partially premixed spray flames using a two-phase transport equation of progress variable", Combustion and Flame, 188, 227-242 (2018).
  18. T. Kitano, K. Kaneko, R. Kurose, S. Komori, "Large-eddy simulations of gas- and liquid-fueled combustion instabilities in back-step flows", Combustion and Flame, 170, 63-78 (2016).
  19. T. Kitano, J. Nishio, R. Kurose, S. Komori, "Evaporation and combustion of multicomponent fuel droplets", Fuel, 136, 219-225 (2014).
  20. T. Kitano, J. Nishio, R. Kurose, S. Komori, "Effects of ambient pressure, gas temperature and combustion reaction on droplet evaporation", Combustion and Flame, 161, 551-564 (2014).
  21. T. Kitano, R. Kurose, S. Komori, "Effects of internal pressure and inlet velocity disturbances of air and fuel droplets on spray combustion field", Journal of Thermal Science and Technology, 8, 269-280 (2013).

Coal Combustion

  1. U. Ahmed, C.T. d'Auzay, M. Muto, N. Chakraborty, R. Kurose, "Statistics of reaction progress variable and mixture fraction gradients of a pulverised coal jet flame using Direct Numerical Simulation data", Proceedings of The Combustion Institute, 37, 2821-2830 (2019).
  2. M. Muto, K. Yuasa, R. Kurose, "Numerical simulation of soot formation in pulverized coal combustion with detailed chemical reaction mechanism", Advanced Powder Technology, 29, 1119-1127 (2018).
  3. M. Muto, K. Yuasa, R. Kurose, "Numerical simulation of ignition in pulverized coal combustion with detailed chemical reaction mechanism", Fuel, 190, 136-144 (2017).
  4. M. Muto, K. Tanno, R. Kurose, "A DNS study on effect of coal particle swelling due to devolatilization on pulverized coal jet flame", Fuel, 184, 749-752 (2016).
  5. T. Hara, M. Muto, T. Kitano, R. Kurose, S. Komori, "Direct numerical simulation of a pulverized coal jet flame employing a global volatile matter reaction scheme based on detailed reaction mechanism", Combustion and Flame, 162, 4391-4407 (2015).

Multiphase Flows

  1. H Muramatsu, AL Pillai, K Kitada, R Kurose, "Numerical simulation of bi-component fuel droplet evaporation using Level Set method", Fuel 318, 123331 (2022).
  2. Z. Yuan, M. Matsumoto, R. Kurose, "Numerical study of droplet impingement on surfaces with hierarchical structures", International Journal of Multiphase Flow 147, 103908 (2022).
  3. Z. Yuan, M. Matsumoto, R. Kurose, "Stability of the non-wetting state in a droplet impinging on surfaces with multiple holes", Physics of Fluids 33, 123315 (2022).
  4. Z. Yuan, M. Mtaumoto, R. Kurose, "Directional rebounding of a droplet impinging hydrophobic surfaces with roughness gradients", International Journal of Multiphase Flow, 138, 103611 (2021).
  5. Z. Yuan, M. Matsumoto, R. Kurose, "Directional migration of an impinging droplet on a surface with wettability difference", Physical Review Fluids, 5, 113605 (2020).
  6. Z. Yuan, J. Wen, M. Matsumoto, R. Kurose, "Anti-wetting ability of the robust hydrophobic surface decorated by submillimeter grooves", International Journal of Multiphase Flow, 131, 103404 (2020).